大数据平台  人工智能技术

面向未来  发明创造

智慧城市案例

智慧城市借助物联网、大数据、云计算等技术,将城市运行的各个垂直系统整合到一个大平台,运用智慧的理念,实现城市运营,优化城市的资源使用和管理。

IBM提出“智慧城市”的概念,得到美国政府的认同和推广。之后,许多国家将智慧城市作为施政的愿景和发展目标。欧盟发表的《欧盟智慧城市报告》,从6个维度来界定智慧城市,包括智慧经济、智慧流动、智慧环境、智慧公众、智慧居住和智慧管理。智慧城市实现信息化和城市的高度融合,使得城市由信息化向智慧化发展。智慧城市作为一个城市的整体发展战略,推动经济转型、产业升级、城市管理提升,实现民众幸福感、企业竞争力和城市可持续发展。

近年来,数据挖掘理论及其技术研究和开发取得了较为快速的发展,其在各个领域应用有着非常广阔的空间和潜力。数据挖掘成为解决数据处理难题的有效途径,主要依赖两项技术:一是对某个领域各部门产生的各种业务数据进行整理和集成,搭建支持决策的数据分析环境,即数据仓库;二是发现隐藏在各种监测数据之中的有用知识,即数据挖掘。

随着国内信息化系统的不断建设,相关的数据量级已从TB级别跃升到PB级别,形成了名副其实的大数据。但是这些以往的海量数据大多只存在于垂直业务和单一应用中,数据过于分散且信息内容单一,而且缺乏有效的数据分析方法,数据处理效率低下,致使海量的数据无法被共享利用,严重制约信息化建设整体发展的速度。因此,需要通过信息化手段对已有各系统的海量数据进行整合、分类、归纳,搭建数据仓库,实现有效的数据存储与管理。

利用各种分析方法,对已有数据进行统计和分析,提供历史数据的分析结果。帮助决策者能快速有效的从大量资料中,获得有价值的分析结果,做出科学的决策,帮助建构商业智能(BI)。

数据可视化是数据挖掘人员必备的技术,它不但可以帮助探索数据内存价值,还能直观有效地展示分析结果,从而更容易让人接受所希望传达的关键信息。发现变化趋势,在某个地区是否有聚集性;识别数据的边缘点,如最大值、最小值、边界数据等。目前国际上将可视化数据挖掘过程分为数据可视化、数据挖掘过程可视化、数据挖掘结果可视化、交互式可视化数据挖掘等。

基于沃达德大数据平台,通过对海量数据采集、处理、存储、分析和数据挖掘,根据数据的特性,采用合适的可视化方式,将数据直观地展现出来,以帮助人们认识数据、理解数据,同时找出包含在海量数据中的规律或者信息,预测未来发展趋势,进行智能化决策分析,使得数据资产成为核心竞争力。

沃达德大数据平台